Anatomically selective serotonergic type 1A and serotonergic type 2A therapies for Parkinson's disease: an approach to reducing dyskinesia without exacerbating parkinsonism?
نویسندگان
چکیده
L-DOPA remains the most effective treatment for Parkinson's disease (PD). However, long-term administration of L-DOPA is compromised by complications, particularly dyskinesia. Serotonergic type 1A (5-HT(1A)) receptor agonists and serotonergic type 2A (5-HT(2A)) receptor antagonists were, until recently, considered to be promising therapies against dyskinesia. However, there have been some recent high-profile failures in clinical trials, notably with sarizotan, and it seems that these classes of drugs may also impair l-DOPA antiparkinsonian efficacy. A simple explanation for the loss of antiparkinsonian benefit might be lack of good selectivity of these compounds for their respective targets, particularly with respect to off-target actions on dopaminergic receptors or poor dose selection in clinical studies. However, such explanations do not hold broadly when considering the actions of all compounds studied to date, whether in animal models or clinical trials. Here, we review 5-HT(1A) and 5-HT(2A) receptor function in PD and provide an anatomically based rationale as to why in some instances 5-HT(1A)- and 5-HT(2A)-modulating drugs might worsen parkinsonism, in addition to reducing dyskinesia. We propose that, in addition to selectivity for specific receptor subtypes, to target 5-HT(1A) and 5-HT(2A) receptors to alleviate dyskinesia, without worsening parkinsonism, it will be necessary to develop compounds that display anatomical selectivity, targeting corticostriatal transmission, while avoiding 5-HT receptors on ascending serotonergic and dopaminergic inputs from the raphe and substantia nigra, respectively.
منابع مشابه
Perspectives in Pharmacology Anatomically Selective Serotonergic Type 1A and Serotonergic Type 2A Therapies for Parkinson’s Disease: An Approach to Reducing Dyskinesia without Exacerbating Parkinsonism?
L-DOPA remains the most effective treatment for Parkinson’s disease (PD). However, long-term administration of L-DOPA is compromised by complications, particularly dyskinesia. Serotonergic type 1A (5-HT1A) receptor agonists and serotonergic type 2A (5-HT2A) receptor antagonists were, until recently, considered to be promising therapies against dyskinesia. However, there have been some recent hi...
متن کاملSerotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson's disease patients.
Levodopa-induced dyskinesias (LIDs) are the most common and disabling adverse motor effect of therapy in Parkinson's disease (PD) patients. In this study, we investigated serotonergic mechanisms in LIDs development in PD patients using 11C-DASB PET to evaluate serotonin terminal function and 11C-raclopride PET to evaluate dopamine release. PD patients with LIDs showed relative preservation of s...
متن کاملThe serotonin system: a potential target for anti-dyskinetic treatments and biomarker discovery.
L-DOPA-induced dyskinesia is a major problem in the treatment of Parkinson's disease. Today there are few anti-dyskinetic treatments available for the patients, and all of them have major limitations. Recent findings have revealed an important role of the serotonin system in L-DOPA-induced dyskinesia. In the parkinsonian brain, serotonin axon terminals can compensate for the dopamine loss by co...
متن کاملSerotonergic modulation of Neural activities in the entorhinal cortex.
The entorhinal cortex (EC) is considered as the gate to control the flow of information into and out of the hippocampus. The EC is important for numerous physiological functions such as emotional control, learning and memory and pathological disorders including Alzheimer's disease, schizophrenia and temporal lobe epilepsy. Serotonin is a classical neurotransmitter which may modify these physiol...
متن کاملSelective serotonergic excitation of callosal projection neurons
Serotonin (5-HT) acting as a neurotransmitter in the cerebral cortex is critical for cognitive function, yet how 5-HT regulates information processing in cortical circuits is not well understood. We tested the serotonergic responsiveness of layer 5 pyramidal neurons (L5PNs) in the mouse medial prefrontal cortex (mPFC), and found three distinct response types: long-lasting 5-HT(1A) (1A) receptor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 339 1 شماره
صفحات -
تاریخ انتشار 2011